Conformational Dissection of a Viral Intrinsically Disordered Domain Involved in Cellular Transformation
نویسندگان
چکیده
Intrinsic disorder is abundant in viral genomes and provides conformational plasticity to its protein products. In order to gain insight into its structure-function relationships, we carried out a comprehensive analysis of structural propensities within the intrinsically disordered N-terminal domain from the human papillomavirus type-16 E7 oncoprotein (E7N). Two E7N segments located within the conserved CR1 and CR2 regions present transient α-helix structure. The helix in the CR1 region spans residues L8 to L13 and overlaps with the E2F mimic linear motif. The second helix, located within the highly acidic CR2 region, presents a pH-dependent structural transition. At neutral pH the helix spans residues P17 to N29, which include the retinoblastoma tumor suppressor LxCxE binding motif (residues 21-29), while the acidic CKII-PEST region spanning residues E33 to I38 populates polyproline type II (PII) structure. At pH 5.0, the CR2 helix propagates up to residue I38 at the expense of loss of PII due to charge neutralization of acidic residues. Using truncated forms of HPV-16 E7, we confirmed that pH-induced changes in α-helix content are governed by the intrinsically disordered E7N domain. Interestingly, while at both pH the region encompassing the LxCxE motif adopts α-helical structure, the isolated 21-29 fragment including this stretch is unable to populate an α-helix even at high TFE concentrations. Thus, the E7N domain can populate dynamic but discrete structural ensembles by sampling α-helix-coil-PII-ß-sheet structures. This high plasticity may modulate the exposure of linear binding motifs responsible for its multi-target binding properties, leading to interference with key cell signaling pathways and eventually to cellular transformation by the virus.
منابع مشابه
NS3 Protease from Hepatitis C Virus: Biophysical Studies on an Intrinsically Disordered Protein Domain
The nonstructural protein 3 (NS3) from the hepatitis C virus (HCV) is responsible for processing the non-structural region of the viral precursor polyprotein in infected hepatic cells. NS3 protease activity, located at the N-terminal domain, is a zinc-dependent serine protease. A zinc ion, required for the hydrolytic activity, has been considered as a structural metal ion essential for the stru...
متن کاملConformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding.
Intrinsically disordered proteins (IDPs) frequently function in protein interaction networks that regulate crucial cellular signaling pathways. Many IDPs undergo transitions from disordered conformational ensembles to folded structures upon binding to their cellular targets. Several possible binding mechanisms for coupled folding and binding have been identified: folding of the IDP after associ...
متن کاملQuantitative determination of the conformational properties of partially folded and intrinsically disordered proteins using NMR dipolar couplings.
Intrinsically disordered proteins (IDPs) inhabit a conformational landscape that is too complex to be described by classical structural biology, posing an entirely new set of questions concerning the molecular understanding of functional biology. The characterization of the conformational properties of IDPs, and the elucidation of the role they play in molecular function, is therefore one of th...
متن کاملA FRET-based method for probing the conformational behavior of an intrinsically disordered repeat domain from Bordetella pertussis adenylate cyclase.
A better understanding of the conformational changes exhibited by intrinsically disordered proteins is necessary as we continue to unravel their myriad biological functions. In repeats in toxin (RTX) domains, calcium binding triggers the natively unstructured domain to adopt a beta roll structure. Here we present an in vitro Forster resonance energy transfer (FRET)-based method for the investig...
متن کاملElectrostatic Forces Mediate Fast Association of Calmodulin and the Intrinsically Disordered Regulatory Domain of Calcineurin
Intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered regions (IDRs) govern a daunting number of physiological processes. For such proteins, molecular mechanisms governing their interactions with proteins involved in signal transduction pathways remain unclear. Using the folded, calcium-loaded calmodulin (CaM) interaction with the calcineurin regulatory IDP as a pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013